A Study of Conceptual Model Uncertainty in Large-Scale CO2 Storage Simulation

نویسندگان

  • Shuiquan Li
  • Ye Zhang
  • Xu Zhang
چکیده

[1] In this study, multiscale permeability upscaling is combined with a sensitivity study of model boundary condition to identify an optimal heterogeneity resolution in developing a reservoir model to represent a deep saline aquifer in CO2 storage simulation. A three‐ dimensional, fully heterogeneous reservoir model is built for a deep saline aquifer in western Wyoming, where each grid cell is identified by multiple material tags. On the basis of these tags, permeability upscaling is conducted to create three increasingly simpler site models, a facies model, a layered model, and a formation model. Accuracy of upscaling is evaluated first, before CO2 simulation is conducted in all models. Since at the injection site, uncertainty exists in the nature of the reservoir compartment, end‐member boundary conditions are evaluated, whereby brine production is introduced to control formation fluid pressure. The effect of conceptual model uncertainty on model prediction is then assessed for each boundary condition. Results suggest that for the spatial and temporal scales considered, without brine production, optimal complexity of the upscaled model depends on the prediction metric of interest; the facies model is the most accurate for capturing plume shape, fluid pressure, and CO2 mass profiles, while the formation model is adequate for pressure prediction. The layered model is not accurate for predicting most of the performance metrics. Moreover, boundary condition impacts fluid pressure and the amount of CO2 that can be injected. For the boundary conditions tested, brine production can modulate fluid pressure, affect the direction of mobile gas flow, and influence the accuracy of the upscaled models. In particular, the importance of detailed geologic resolution is weakened when viscous force is strengthened in relation to gravity force. When brine production is active, variability of the predictions by the upscaled models becomes smaller and the predictions are more accurate, suggesting a subtle but important interplay between heterogeneity resolution, fluid driving forces, and model predictions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Significance of Conceptual Model Uncertainty in Simulating Carbon Sequestration in a Deep Inclined Saline Aquifer

In modeling geologic carbon sequestration in a deep inclined aquifer in Wyoming, the impact of geologic, engineering, and environmental uncertainty factors on parameter importance and prediction uncertainty is evaluated. Given site characterization data, a suite of geologic model families were built to represent aquifer permeability heterogeneity at increasing complexity. With each family, the ...

متن کامل

بررسی عدم قطعیت مدل موازنه جرمی برای تخمین نرخ فرایندهای هوازی در محل دفن پسماندهای شهری

Background and Objective: The aim of this study was to assess the sensitivity and uncertainty analysis of a mass balance model to estimate the rate of aerobic processes in a landfill. Materials and Methods: Monte Carlo simulation is a common method to evaluate uncertainty of the results of a model. Here, we used a Monte Carlo (MC) simulation. The data obtained from the experiments were used as...

متن کامل

Numerical Models for Evaluating CO2 Storage in Deep, Saline Aquifers: Leaky Wells and Large-Scale Geological Features

Geological storage of CO2 is one of the most promising strategies for obtaining largescale reduction in global CO2 emissions. Deep, saline aquifers within sedimentary basins have been identified as attractive options for geologic storage with a large potential storage capacity for CO2 disposal. An important risk of geological storage is the potential for leakage along existing oil and gas wells...

متن کامل

Flood Hydrograph Simulation with Uncertainty in Rainfall - Runoff Parameters

Flood hydrograph simulation is affected by uncertainty in Rainfall – Runoff )RR( parameters. Uncertainty of RR parameters in Gharasoo catchment, part of the great Karkheh river basin, is evaluated by Monte–Carlo (MC) approach. A conceptual-distributed model, called ModClark, was used for basin simulation, in which the basin’s hydrograph was determined using the superposition of runoff generated...

متن کامل

Flood Hydrograph Simulation with Uncertainty in Rainfall - Runoff Parameters

Flood hydrograph simulation is affected by uncertainty in Rainfall – Runoff )RR( parameters. Uncertainty of RR parameters in Gharasoo catchment, part of the great Karkheh river basin, is evaluated by Monte–Carlo (MC) approach. A conceptual-distributed model, called ModClark, was used for basin simulation, in which the basin’s hydrograph was determined using the superposition of runoff generated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011